Saturday, December 16, 2017You are here

Product Citations » 40-xxxx

 

40-1234

Chen, S., J. E. Dove, J. S. Brockenbrough, and J. P. Aris. (1997) Homocitrate synthase is located in the nucleus in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272:10839-10846.

 

Comprehensive Yeast Genome Database (CYGD) Link: Lys20p press here , Lys21p press here .

Saccharomyces Genome Database (SGD) Link: Lys20p Press here , Lys21p press here .

Go to Top


40-1235

Ochs RL, Lischwe MA, Spohn WH, Busch H. Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123-133 (1985).

 

Aris JP and Blobel G. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107:17-31 (1988).

 

Newton K, Petfalski E, Tollervey D, Caceres JF. Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Mol Cell Biol. 23:8519-8527 (2003).

 

Tyagi S and Alsmadi O. Imaging native beta-actin mRNA in motile fibroblasts. Biophys J. 87:4153-62 (2004).

 

Paeschke1 K, Simonsson T, Postberg J, Rhodes D, Lipps H-J. Telomere end-binding proteins control the formation of G-quadruplex DNA structures in vivo Nature Structural & Molecular Biology 12, 847-854 (2005)

 

Vermaak D, Henikoff S, Malik HS. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genetics 1:96-108 (2005).

 

Examples: For some on line images generated with this antibody press here

OMIM link: Press here

Comprehensive Yeast Genome Database (CYGD) Link: Press here

Saccharomyces Genome Database (SGD) Link: Press here

Go to Top


40-1236

Ochs RL, Lischwe MA, Spohn WH, Busch H. Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell 54:123-133 (1985).

 

Aris JP and Blobel G. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107:17-31 1988 .

 

Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF. Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J. 22:6045-56 (2003).

 

Porter SE, Penheiter KL, Jaehning JA. Separation of the Saccharomyces cerevisiae Paf1 Complex from RNA Polymerase II Results in Changes in Its Subnuclear Localization. Eukaryotic Cell 4:209-220 (2004)

 

Hochwagen A, Tham W, Brar G, Amon, A. The FK506 Binding Protein Fpr3 Counteracts Protein Phosphatase 1 to Maintain Meiotic Recombination Checkpoint Activity Cell 122:861–873 (2005)

 

OMIM link: Press here.

Pfam Link : Press here

Go to Top


40-1237

de Beus E, Brockenbrough JS, Hong B & Aris JP. Yeast NOP2 encodes an essential nucleolar protein with homology to a human proliferation marker. J. Cell Biol. 127:1799-813 1994

 

King M, Ton D & Redman KL. A conserved motif in the yeast nucleolar protein Nop2p contains an essential cysteine residue. Biochem. J. 337:29-35 1999

 

Hong B, Wu K, Brockenbrough JS, Wu P & Aris JP. Temperature sensitive nop2 alleles defective in synthesis of 25S rRNA and large ribosomal subunits in Saccharomyces cerevisiae. Nucleic Acids Res. 29:2927-37 2001

Go to Top


40-1238

No References

Go to Top


40-1239

Tolerico, L. H., A. L. Benko, J. P. Aris, D. R. Stanford, N. C. Martin, and A. K. Hopper. Saccharomyces cerevisiae Mod5p-II contains sequences antagonistic for nuclear and cytosolic locations. Genetics 151:57-75 (1999).

 

Fahrenkrog, B., J. P. Aris, E. C. Hurt, N. Pante, and U. Aebi. Comparative spatial localization of protein-A-tagged and authentic yeast nuclear pore complex proteins by immunogold electron microscopy. J. Struct. Biol. 129:295-305 (2000)

Go to Top


40-1240

Go to Top


40-1241

Go to Top


40-1242

Wu P, Brockenbrough JS, Metcalfe AC, Chen S. and Aris JP. Nop5p is a small nucleolar ribonucleoprotein component required for pre-18 S rRNA processing in yeast. J. Biol. Chem. 273 (26), 16453-16463 (1998).

Go to Top


40-1243

Lin JJ and Zakian VA. Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro. Nucleic Acids Res 22:4906-13 1994 .

Go to Top


40-1244

Bignami A, Eng LF, Dahl D, Uyeda CT. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43:429-35 1972.

 

Liem RKH, Yen SH, Salomon GD and Shelanski ML. Intermediate filaments in nervous tissues. J Cell Biol 79:637-745 (1978).

 

Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE and Messing A. Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 27:117-20 2001

Go to Top


40-1245

Franke, W. W., Schmid, E., Osborn, M. and Weber, K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA 75:5034–5038 (1978) .

 

Muller, M., Bhattacharya, S. S., Moore, T., Prescott, Q., Wedig, T., Herrmann, H., Magin, T. M. Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum. Molec. Genet. 18:1052-1057 (2009) .

Go to Top


40-1246

Morgenegg G, Winkler GC, Hubscher U, Heizmann CW, Mous J, Kuenzle CC. Glyceraldehyde-3-phosphate dehydrogenase is a nonhistone protein and a possible activator of transcription in neurons. J Neurochem. 47:54-62 1986

 

Schulze H, Schuler A, Stuber D, Dobeli H, Langern H & Huber G. Rat brain glyceraldehyde-3-phosphate dehydrogenase interacts with the recombinant cytoplasmic domain of Alzheimer's beta-amyloid precursor protein. J Neurochem. 60:1915-22 1993

 

Burke JR, Enghild JJ, Martin ME, Jou Y-S, Myers RM, Roses AD, Vance JM & Strittmatter WJ. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med. 2: 347-350, 1996.


Dastoor Z. & Dreyer, J-L. Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J. Cell Sci. 114:1643-1653 2001.

 

Fortun J, Dunn WA, Joy S, Li J. & Notterpek, L. Emerging Role for Autophagy in the Removal of Aggresomes in Schwann Cells. J. Neurosci. 23:10672-10680 2003.

 

Ellis RC, Earnhardt JN, Hayes RL, Wang KK & Anderson DK. Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. J Neurochem. 88:689-97 2004.

 

Fortun J, Li J, Go J, Fenstermaker A, Fletcher BS & Notterpek L. Impaired proteasome activity and accumulation of ubiquitinated substrates in a

hereditary neuropathy model. J Neurochem. 92:1531-41 2005

 

Fortun J, Li J, Go J, Fenstermaker A, Fletcher BS & Notterpek L. Impaired proteasome activity and accumulation of ubiquitinated substrates in a hereditary neuropathy model. J Neurochem. 93:766-8 2005

 

Iskandar M, Swist E, Trick KD, Wang B, L'Abbe MR, Bertinato J. Copper chaperone for Cu/Zn superoxide dismutase is a sensitive biomarker of mild copper deficiency induced by moderately high intakes of zinc. Nutr J. 4:35 2005

 

Fortun J, Go JC, Li J, Amici SA, Dunn WA Jr, Notterpek L. Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression. Neurobiol Dis. 22:153-164 2006

 

Amici SA, Dunn WA, Murphy AJ, Adams NC, Gale NW, Valenzuela DM, Yancopoulos GD & Notterpek L.Peripheral Myelin Protein 22 Is in Complex with {alpha}6beta4 Integrin, and Its Absence Alters the Schwann Cell Basal Lamina. J. Neurosci. 26:1179-89 2006

 

Amici SA, Dunn WA & Notterpek, L. Developmental abnormalities in the nerves of peripheral myelin protein 22-deficient mice. J. Neurosci. Res. 85:238-249 2006

 

Felitsyn N, Stacpoole, PW & Nottepek L. Dichloroacetate causes reversible demyelination in vitro: potential mechanism for its neuropathic effect. J. Neurochem 100:429-36 2007

 

Rangaraju S, Madorsky I, Pileggi JG, Kamal A, Notterpek L. Pharmacological induction of the heat shock response improves myelination in a neuropathic model. Neurobiol Dis. 32:105-15 2008

 

Felitsyn N, McLeod C, Shroads AL, Stacpoole PW, Notterpek L. The heme precursor delta-aminolevulinate blocks peripheral myelin formation. J Neurochem. 106:2068-79 2008

 

Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. J Neurosci. 28:11720-30 2008

 

Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 57:1265-79 2009

 

Rangaraju S, Hankins D, Madorsky I, Madorsky E, Lee WH, Carter CS, Leeuwenburgh C, Notterpek L.Molecular architecture of myelinated peripheral nerves is supported by calorie restriction with aging. Aging Cell. 8:178-91 2009

 

Madorsky I, Opalach K, Waber A, Verrier JD, Solmo C, Foster T, Dunn WA Jr, Notterpek L. Intermittent fasting alleviates the neuropathic phenotype in a mouse model of Charcot-Marie-Tooth disease. Neurobiol Dis. 34:146-54 2009

 

Opalach K, Rangaraju S, Madorsky I, Leeuwenburgh C, Notterpek L. Lifelong calorie restriction alleviates age-related oxidative damage in peripheral nerves. Rejuvenation Res. 13:65-74 2010.

 

Verrier JD, Semple-Rowland S, Madorsky I, Papin JE, Notterpek L. Reduction of Dicer impairs Schwann cell differentiation and myelination. J. Neurosci Res. 88:2558-68 2010.

 

Zeier Z, Madorsky I, Xu Y, Ogle WO, Notterpek L, Foster TC. Gene Expression in the Hippocampus: Regionally Specific Effects of Aging and Caloric Restriction. Mech Ageing Dev. 132:8-19 2011

 

Verrier JD, Madorsky I, Coggin WE, Geesey M, Hochman M, Walling E, Daroszewski D, Eccles KS, Ludlow R, Semple-Rowland SL. Bicistronic lentiviruses containing a viral 2A cleavage sequence reliably co-express two proteins and restore vision to an animal model of LCA1. PLoS One. 6:e20553 2011

 

Lee WH, Kumar A, Rani A, Herrera J, Xu J, Someya S, Foster TC. Influence of viral vector-mediated delivery of superoxide dismutase and catalase to the hippocampus on spatial learning and memory during aging. Antioxid Redox Signal. 16:339-50 2012

 

Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC. Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging. 2011 Aug 3. [Epub ahead of print]

 

Examples: For some on line images generated with this antibody press here

OMIM link: Press here

Go to Top


40-1265

Maroteaux, L., J.T. Campanelli, and R.H. Scheller. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8:2804-2815 (1988) .

Lavedan, C. The Synuclein Family. Genome Research 8:871-880 (1998).

Polymeropoulos, MH et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276: 2045-2047 (1997).

Kruger, R et al. Ala30-to-Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nature Genet. 18: 106-108 (1998).

Chartier-Harlin, M-C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364: 1167-1169 (2004).

Singleton, AB.et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science 302: 841 (2003).

Culvenor, J.G. et al. Non-Abeta component of Alzheimer's disease amyloid (NAC) revisited: NAC and alpha-synuclein are not associated with Abeta amyloid. Am. J. Pathol. 155:1173-1181 (1999) .

Ibanez, P. et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364:1169-1171 (2004 ).

Dyson, HJ. and Wright, PE. Intrinsically unstructured proteins and their functions. Nature Reviews of Molecular and Cellular Biology 6:197-208 (2005).

Cookson MR. Alpha-Synuclein and neuronal cell death. Mol Neurodeg 4:9 (2009).

 

Go to Top


40-1266

Maroteaux, L., J.T. Campanelli, and R.H. Scheller. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8:2804-2815 (1988) .

 

Lavedan, C. The Synuclein Family. Genome Research 8:871-880 (1998).

Polymeropoulos, MH et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276: 2045-2047 (1997).

 

Kruger, R et al. Ala30-to-Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease. Nature Genet. 18: 106-108 (1998).

 

Chartier-Harlin, M-C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson's disease. Lancet 364: 1167-1169 (2004).

 

Singleton, AB.et al. Alpha-synuclein locus triplication causes Parkinson's disease. Science 302: 841 (2003).

 

Culvenor, J.G. et al. Non-Abeta component of Alzheimer's disease amyloid (NAC) revisited: NAC and alpha-synuclein are not associated with Abeta amyloid. Am. J. Pathol. 155:1173-1181 (1999) .

 

Ibanez, P. et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson's disease. Lancet 364:1169-1171 (2004 ).

 

Dyson, HJ. and Wright, PE. Intrinsically unstructured proteins and their functions. Nature Reviews of Molecular and Cellular Biology 6:197-208 (2005).

 

Cookson MR. Alpha-Synuclein and neuronal cell death. Mol Neurodeg 4:9 (2009).

Go to Top


40-1267

 

de Hostos, E. The coronin family of actin-associated proteins. Trends in Cell Biology 9:345-350 (1999) .

 

Rybakin, V. and Clemen, C. S. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. BioEssays. 27:625-632 (2005) .

 

Appleton, B. A., Wu, P and Weisman, C. The crystal structure of murine coronin-1: a regulator of actin cytoskeletal dynamics in lymphocytes. Structure 14:87-96 (2006).

 

Ahmed Z, Shaw G, Sharma VP, Yang C, McGowan E, Dickson DW. The Actin Binding Proteins Coronin-1a and IBA-1 Are Effective Microglial Markers for Immunohistochemistry J. Histochem. Cytochem. 2007 (Epub).

                                                                                                                        

 

 

Go to Top


40-1268

 

Hirai, M. and Shimizu N. Purification of two distinct proteins of approximate Mr 80,000 from human epithelial cells and identification as proper substrates for protein kinase C. Biochem J. 270:583-9 (1990).

 

Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC and Aderem A. MARCKS is an a ctin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356: 618-622 (1992)

 

Blackshear PJ. The MARCKS family of cellular protein kinase C substrates. J. Biol. Chem. 268: 1501-1504 (1993).

 

Stumpo DJ, Bock CB, Tuttle JS and Blackshear PJ. MARCKS deficiency in mice leads to abnormal brain development and perinatal death. Proc. Nat. Acad. Sci. 92; 944-948 (1995)

                 

 

Go to Top


40-1269

 

Goetz AK, Scheffler B, Chen HX, Wang S, Suslov O, Xiang H, Brüstle O, Roper SN, Steindler DA. Temporally restricted substrate interactions direct fate and specification of neural precursors derived from embryonic stem cells. Proc Natl Acad Sci U S A. 103:11063-11068 (2006).

 

Walton NM, Snyder GE, Park D, Kobeissy F, Scheffler B, Steindler DA. Gliotypic neural stem cells transiently adopt tumorigenic properties during normal differentiation. Stem Cells 27:280-289 (2009).

                                                                                

 

 

Go to Top


40-1270

Begemann G, Paricio N, Artero R, Kiss I, Perez-Alonso M. and Mlodzik M. Muscleblind, a gene required for photoreceptor differentiation in Drosophila, encodes novel nuclear Cys3His-type zinc-finger-containing proteins. Development 124:4321-4331 (1997).

 

Jansen G et al. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet. 13:316-324 (1996)

 

Reddy S et al. Mice lacking the myotonic dystrophy protein kinase develop a late onset progressive myopathy. Nat Genet. 13:325-335 (1996)

 

Miller JW, Urbinati CR, Teng-Umnuay P, Stenberg MG, Byrne BJ, Thornton CA and Swanson MS. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19:4439-4448 (2000) .

 

Kanadia RN, Urbinati CR, Crusselle VJ, Luo D, Lee YJ, Harrison JK, Oh SP and Swanson MS. Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. Gene Expr. Patterns 3:459-462 (2003).

 

Kanadia RN, Johnstone KA, Mankodi A, Lungu C, Thornton CA, Esson D, Timmers AM, Hauswirth WW and Swanson MS. A muscleblind knockout model for myotonic dystrophy. Science 302:1978-1980 (2003) .

 

OMIM Links: Muscle blind like protein 1 (MBNL1, a.k.a. MBNL, KIAA0428 and EXP) Press here , Muscleblind-like protein 2 (MBNL2, a.k.a. MBLL for Muscleblind-like protein like) Press here , Muscleblind like protein 3 (MBNL3, a.k.a. MBXL for Muscleblind-like protein X-linked) Press here .

 

Go to Top


40-1271

 

Eylar EH, Brostoff S, Hashim G, Caccam J, Burnett P. Basic A1 protein of the myelin membrane. The complete amino acid sequence. J. Biol. Chem. 246:5770-5784 (1971).

 

Marty MC, Alliot F, Rutin J, Fritz R, Trisler D. and Pessac B. The myelin basic proteingene is expressed in differentiated blood cell lineages and in hemopoietic progenitors. Proc. Nat. Acad. Sci. 99:8856-8861 (2002)

 

 

 

Go to Top


 

40-1272

Eylar EH, Brostoff S, Hashim G, Caccam J, Burnett P. Basic A1 protein of the myelin membrane. The complete amino acid sequence. J. Biol. Chem. 246:5770-5784 (1971).

 

Marty MC, Alliot F, Rutin J, Fritz R, Trisler D. and Pessac B. The myelin basic protein gene is expressed in differentiated blood cell lineages and in hemopoietic progenitors. Proc. Nat. Acad. Sci. 99:8856-8861 (2002) .

 

 

 

 

 

 

 

 

 

 

Go to Top


40-1273

Lendahl U, Zimmerman LB and McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell 60:585-95 (1990).

 

Hockfield S and McKay RD. Identification of major cell classes in the developing mammalian nervous system. J. Neurosci. 5:3310-3328 (1985).

 

 

 

Go to Top


40-1274

 

Pachter J and Liem RKH. Alpha-Internexin, a 66-kD intermediate filament-binding protein from mammalian central nervous tissues. J Cell Biol 101:1316-22 (1985)

 

McGraw T. et al. Axonally transported peripheral signals regulate alpha-internexin expression in regenerating motoneurons. J Neurosci 22:4955-63 (2002)

 

Josephs KA et al. Neurofilament inclusion body disease: a new proteinopathy? Brain 126:2291-2303 (2003).

 

Evans J et al. Characterization of mitotic neurons derived from adult rat hypothalamus and brain stem. J. Neurophysiol. 87:1076-85 (2002).

 

Go to Top


40-1275

 

Harris, J., Ayyub, C. and Shaw G. A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H. J Neurosci Res 30:47-62 1991.

 

OMIM Link: Press here

 

Go to Top


40-1276

Harris, J., Ayyub, C. and Shaw G. A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H. J Neurosci Res 30:47-62 1991.

 

OMIM link: Press here

Go to Top


40-1277

Harris, J., Ayyub, C. and Shaw G. A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H. J Neurosci Res 30:47-62 1991.

 

Go to Top


40-1278

 

Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK and Howland DR. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun. 336:1268-1277 (2005).

 

Delacourte A, Filliatreau G, Boutteau F, Biserte G, Schrevel J. Study of the 10-nm- filament fraction isolated during the standard microtubule preparation. Biochem J. 191:543-6 (1980).

Go to Top


40-1279
Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB, Petrin AN and Evgrafov OV. A new variant of Charcot-

Marie-Tooth disease type 2 is probably the result of a mutation in the neurofilament-light gene. Am. J. Hum. Genet. 67:37-46, 2000.

 

 

 

 

Go to Top

40-1280

 

Omim link: press here

Shaw G, Yang C, Ellis R, Anderson K, Parker Mickle J, Scheff S, Pike B, Anderson DK and Howland DR. Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun. 336:1268-1277 (2005).

 

 

 

Go to Top


40-1281

 

Harris, J., Ayyub, C. and Shaw G. A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF-M and NF-H. J Neurosci Res 30:47-62 1991.

 

Shaw G, Yang C, Zhang L, Cook P, Pike B, Hill WD. Characterization of the bovine neurofilament NF-M protein and cDNA sequence, and identification of in vitro and in vivo calpain cleavage sites. Biochem Biophys Res Commun. 325:619-25 (2004)


Go to Top


40-1282

Shaw, G . Morse, S., Ararat, M. and Graham, F. Transformation of human cells by human adenoviruses and the origins of HEK 293 cells. Faseb Journal 16:869-871 (2002) .

 

Begaz, T., Kyriacou, D. N., Segal, J. and Bazarian, J. J. Serum biochemical markers for post-concussion syndrome in patients with mild traumatic brain injury. J. Neurotrauma 23:1201-1210 (2006) .

 

 

 

Go to Top


40-1283

 

Go to Top


40-1284

 

Portier MM, de Néchaud B, Gros F. Peripherin, a new member of the intermediate filament protein family. Dev Neurosci. 6:335-44 (1984)

Troy CM, Brown K, Greene LA, Shelanski ML. Ontogeny of the neuronal intermediate filament protein, peripherin, in the mouse embryo. Neuroscience. 36:217-37 (1990) .

Aletta JM, Angeletti R, Liem RK, Purcell C, Shelanski ML, Greene LA. Relationship between the nerve growth factor-regulated clone 73 gene product and the 58-kilodalton neuronal intermediate filament protein (peripherin). J Neurochem. 51:1317-20 (1988) .

Errante LD, Wiche G and Shaw G. Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system J. Neurosci. Res. 37:515-528 (1994).

Omim link: press here

Go to Top


40-1285

 

Lu KP, Hanes SD and Hunter T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380 544-547, (1996) .

Go to Top


40-1286

 

Ou SH, Wu F, Harrich D, García-Martínez LF and Gaynor RB. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 69:3584-96 (1995).

 

Neumann, M.; Sampathu, D. M.; Kwong, L. K.; Truax, A. C.; Micsenyi, M. C.; Chou, T. T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C. M.; McCluskey, L. F.; Miller, B. L.;

 

Masliah, E.; Mackenzie, I. R.; Feldman, H.; Feiden, W.; Kretzschmar, H. A.; Trojanowski, J. Q.; Lee, V. M.-Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130-133 (2006) .

 

Forman MS, Trojanowski JQ and Lee VM-Y. TDP-43: a novel neurodegenerative proteinopathy. Current Opinions in Neurobiology 17:548-55 (2007).

 

Wilson AC, Dugger BN, Dickson DW and Wang DS. TDP-43 in aging and Alzheimer's disease - a review. Int J Clin Exp Pathol. 4:147-55 (2011).

Go to Top


40-1287

Perry, G. et al. Proc. Natl. Acad. Sci. USA 84, 3033-3036 (1987)

 

Shaw, G. and Chau, V. Proc. Natl. Acad. Sci. USA 85, 2854-2858 (1988)

 

Hirano, S., et al. Cell 70: 293-301 (1992)

 

Cuervo, A.M., et al. Mol. Biol. 9: 1995-2010 (1995)

 

Sternsdorf, T., et al. J. Cell Biol. 139: 1621-1634 (1997)

 

Tae-Wan Kim, et al. J. Biol. Chem. 272: 11006-11010 (1997)

 

Verdier, F., et al. J. Cell Biol. 273: 28185-28190 (1998)

 

Laroia, G., et al. Science 284: 499-502 (1999)

 

Marti, A., et al. Nature Cell Biol. 1: 14-19 (1999)

 

Sternsdorf, T., et al. Mol. Cell Biol. 19: 5170-5178 (1999)

 

Wirbelauer C, Sutterluty H, Blondel M, Gstaiger M, Peter M, Reymond F, Krek W. The F- Harris KF, Shoji I, Cooper EM, Kumar S, Oda H, Howley PM.

Ubiquitin-mediated degradation of active Src tyrosine kinase. Proc Natl Acad Sci U S A. 96:13738-43 (1999) .

Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, Ruthardt M. PIC-1/SUMO-1-modified PML-retinoic acid receptor alpha mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol. 19:5170-8 (1999) .

Marti A, Wirbelauer C, Scheffner M, Krek W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol. 1:14-9 (1999) .

box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J. 19:5362-75 (2000) .

Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol. 22:3316-26 (2002)

Boutajangout A, Authelet M, Blanchard V, Touchet N, Tremp G, Pradier L, Brion JP. Characterisation of cytoskeletal abnormalities in mice transgenic for wild-type human tau and familial Alzheimer's disease mutants of APP and presenilin-1. Neurobiol Dis. 15:47-60 (2004).

Wang DS, Bennett DA, Mufson EJ, Mattila P, Cochran E, Dickson DW. Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neurosci. Res. 48:93-100 (2004) .

He CZ, Hays AP. Expression of peripherin in ubiquinated inclusions of amyotrophic lateral sclerosis. J. Neurol. Sci. 217:47-54 (2004) .

Fortun J, Go JC, Li J, Amici SA, Dunn WA Jr, Notterpek L. Alterations in degradative pathways and protein aggregation in a neuropathy model based on PMP22 overexpression. Neurobiol Dis. 22:153-164 2006

Go to Top


40-1288

 

Doran JF, Jackson P, Kynoch PA, Thompson RJ. Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem. 40:1542-7 (1983) .

 

Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 1989 246:670-3 (1989).

 

Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111:209-18 (2002).

 

Go to Top


 

40-1289

 

Doran JF, Jackson P, Kynoch PA, Thompson RJ. Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem. 40:1542-7 (1983) .

 

Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 1989 246:670-3 (1989).

 

Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111:209-18 (2002).

 

Day IN, Thompson RJ. UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 2009 Oct 30.

Go to Top


40-1290

 

Doran JF, Jackson P, Kynoch PA, Thompson RJ. Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. J Neurochem. 40:1542-7 (1983) .

 

Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 1989 246:670-3 (1989).

 

Kurihara LJ, Kikuchi T, Wada K, Tilghman SM. Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum Mol Genet. 10:1963-70 (2001).

 

Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr. The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111:209-18 (2002).

 

Day IN, Thompson RJ. UCHL1 (PGP 9.5): Neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 2009 Oct 30.

Go to Top


40-1291

Franke, W. W., Schmid, E., Osborn, M. and Weber, K. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA 75:5034–5038 (1978) .

 

Muller, M., Bhattacharya, S. S., Moore, T., Prescott, Q., Wedig, T., Herrmann, H., Magin, T. M. Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum. Molec. Genet. 18:1052-1057 (2009) .

 

 

 

Go to Top


40-1292

Collier, I. E., Wilhelm, S. M., Eisen, A. Z., Marmer, B. L., Grant, G. A., Seltzer, J. L., Kronberger, A., He, C. S., Bauer, E. A., and Goldberg, G. I. H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 263:6579-6587

(1988) .

 

C. Krekoski, D. Neubauer, J.B. Graham D. Muir. Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts. J. Neuroscience 22:10408-10415 (2002) .

 

D. Muir. Differences in proliferation and invasion by normal, transformed and NF1 Schwann cell cultures are influenced by matrix metalloproteinase expression. Clinical and Experimental Metastasis 13:303-314 (1995)

 

Go to Top


40-1293

n/a

Go to Top


40-1294

n/a

Go to Top


 

All images on this page the property of and are used with permission from EnCor Biotechnology Inc. www.encorbio.com/products.htm